Optimized implementation of the Lanczos method for magnetic systems
نویسنده
چکیده
Numerically exact investigations of interacting spin systems provide a major tool for an understanding of their magnetic properties. For medium size systems the approximate Lanczos diagonalization is the most common method. In this article we suggest two improvements: efficient basis coding in subspaces and simple restructuring for openMP parallelization.
منابع مشابه
An effective method for eigen-problem solution of fluid-structure systems
Efficient mode shape extraction of fluid-structure systems is of particular interest in engineering. An efficient modified version of unsymmetric Lanczos method is proposed in this paper. The original unsymmetric Lanczos method was applied to general form of unsymmetric matrices, while the proposed method is developed particularly for the fluid-structure matrices. The method provides us with si...
متن کاملTwo Algorithms for Symmetric Linear Systems with Multiple Right-hand Sides
In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deeation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saun-ders' MINRES method for iterative solution of sym...
متن کاملAn Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices Part II
In Part I [6] of this paper, we have presented an implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. Here, we show how the look-ahead Lanczos process | combined with a quasi-minimal residual (QMR) approach | can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are p...
متن کاملAn Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices
The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. We present an implementation of a look-ahead version of the Lanczos algorithm that|except for the very special situation of an in...
متن کاملAn Implementation of the QMR Method Based on Coupled Two-Term Recurrences
Recently, the authors have proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR), for solving non-Hermitian linear systems. In the original implementation of the QMR method, the Lanczos process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of three-term rec...
متن کامل